Towards Robust Cross-domain Image Understanding with Unsupervised Noise Removal

Lei Zhu, Zhaojing Luo*, Wei Wang, Meihui Zhang, Gang Chen, Kaiping Zheng

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Deep learning has made a tremendous impact on various applications in multimedia, such as media interpretation and multimodal retrieval. However, deep learning models usually require a large amount of labeled data to achieve satisfactory performance. In multimedia analysis, domain adaptation studies the problem of cross-domain knowledge transfer from a label rich source domain to a label scarce target domain, thus potentially alleviates the annotation requirement for deep learning models. However, we find that contemporary domain adaptation methods for cross-domain image understanding perform poorly when source domain is noisy. Weakly Supervised Domain Adaptation (WSDA) studies the domain adaptation problem under the scenario where source data can be noisy. Prior methods on WSDA remove noisy source data and align the marginal distribution across domains without considering the fine-grained semantic structure in the embedding space, which have the problem of class misalignment, e.g., features of cats in the target domain might be mapped near features of dogs in the source domain. In this paper, we propose a novel method, termed Noise Tolerant Domain Adaptation (NTDA), for WSDA. Specifically, we adopt the cluster assumption and learn cluster discriminatively with class prototypes (centroids) in the embedding space. We propose to leverage the location information of the data points in the embedding space and model the location information with a Gaussian mixture model to identify noisy source data. We then design a network which incorporates the Gaussian mixture noise model as a sub-module for unsupervised noise removal and propose a novel cluster-level adversarial adaptation method based on the Generative Adversarial Network (GAN) framework which aligns unlabeled target data with the less noisy class prototypes for mapping the semantic structure across domains. Finally, we devise a simple and effective algorithm to train the network from end to end. We conduct extensive experiments to evaluate the effectiveness of our method on both general images and medical images from COVID-19 and e-commerce datasets. The results show that our method significantly outperforms state-of-the-art WSDA methods.

源语言英语
主期刊名MM 2021 - Proceedings of the 29th ACM International Conference on Multimedia
出版商Association for Computing Machinery, Inc
3024-3033
页数10
ISBN(电子版)9781450386517
DOI
出版状态已出版 - 17 10月 2021
活动29th ACM International Conference on Multimedia, MM 2021 - Virtual, Online, 中国
期限: 20 10月 202124 10月 2021

出版系列

姓名MM 2021 - Proceedings of the 29th ACM International Conference on Multimedia

会议

会议29th ACM International Conference on Multimedia, MM 2021
国家/地区中国
Virtual, Online
时期20/10/2124/10/21

指纹

探究 'Towards Robust Cross-domain Image Understanding with Unsupervised Noise Removal' 的科研主题。它们共同构成独一无二的指纹。

引用此