TY - JOUR
T1 - Towards Effective and General Graph Unlearning via Mutual Evolution
AU - Li, Xunkai
AU - Zhao, Yulin
AU - Wu, Zhengyu
AU - Zhang, Wentao
AU - Li, Rong Hua
AU - Wang, Guoren
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - With the rapid advancement of AI applications, the growing needs for data privacy and model robustness have highlighted the importance of machine unlearning, especially in thriving graph-based scenarios. However, most existing graph unlearning strategies primarily rely on well-designed architectures or manual process, rendering them less user-friendly and posing challenges in terms of deployment efficiency. Furthermore, striking a balance between unlearning performance and framework generalization is also a pivotal concern. To address the above issues, we propose Mutual Evolution Graph Unlearning (MEGU), a new mutual evolution paradigm that simultaneously evolves the predictive and unlearning capacities of graph unlearning. By incorporating aforementioned two components, MEGU ensures complementary optimization in a unified training framework that aligns with the prediction and unlearning requirements. Extensive experiments on 9 graph benchmark datasets demonstrate the superior performance of MEGU in addressing unlearning requirements at the feature, node, and edge levels. Specifically, MEGU achieves average performance improvements of 2.7%, 2.5%, and 3.2% across these three levels of unlearning tasks when compared to state-of-the-art baselines. Furthermore, MEGU exhibits satisfactory training efficiency, reducing time and space overhead by an average of 159.8x and 9.6x, respectively, in comparison to retraining GNN from scratch.
AB - With the rapid advancement of AI applications, the growing needs for data privacy and model robustness have highlighted the importance of machine unlearning, especially in thriving graph-based scenarios. However, most existing graph unlearning strategies primarily rely on well-designed architectures or manual process, rendering them less user-friendly and posing challenges in terms of deployment efficiency. Furthermore, striking a balance between unlearning performance and framework generalization is also a pivotal concern. To address the above issues, we propose Mutual Evolution Graph Unlearning (MEGU), a new mutual evolution paradigm that simultaneously evolves the predictive and unlearning capacities of graph unlearning. By incorporating aforementioned two components, MEGU ensures complementary optimization in a unified training framework that aligns with the prediction and unlearning requirements. Extensive experiments on 9 graph benchmark datasets demonstrate the superior performance of MEGU in addressing unlearning requirements at the feature, node, and edge levels. Specifically, MEGU achieves average performance improvements of 2.7%, 2.5%, and 3.2% across these three levels of unlearning tasks when compared to state-of-the-art baselines. Furthermore, MEGU exhibits satisfactory training efficiency, reducing time and space overhead by an average of 159.8x and 9.6x, respectively, in comparison to retraining GNN from scratch.
UR - http://www.scopus.com/inward/record.url?scp=85189539277&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i12.29273
DO - 10.1609/aaai.v38i12.29273
M3 - Conference article
AN - SCOPUS:85189539277
SN - 2159-5399
VL - 38
SP - 13682
EP - 13690
JO - Proceedings of the AAAI Conference on Artificial Intelligence
JF - Proceedings of the AAAI Conference on Artificial Intelligence
IS - 12
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
Y2 - 20 February 2024 through 27 February 2024
ER -