Toward uniform Li plating/stripping by optimizing Li-ion transport and nucleation of engineered graphene aerogel

Jiahui Zhou, Man Xie*, Feng Wu, Guangling Wei, Yang Mei, Ruling Huang, Guoqiang Tan, Li Li, Renjie Chen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

13 引用 (Scopus)

摘要

Great efforts have been made to optimize Li metal anodes to improve energy density and cycle life. However, challenges remain in achieving uniform Li plating/stripping while maintaining stable interphase chemistry. Here, an engineered graphene aerogel with uniformly oriented microscale channels, and normalized lithiophilic binding sites as hosted Li anodes is reported. Vertically aligned graphene with oriented channels are constructed using a freeze-drying mechanism, and highly lithiophilic binding sites are optimized by adjusting functional oxygen anions on graphene. Based on the in-situ optical microscopy visualization and first-principles calculations, this graphene host design presents homogeneous Li-ion nucleation owing to its straight transport channels with ultrahigh lithiophilicity, resulting in greatly improved cycling stability. Also, the flat and compatible electrode–electrolyte interphase facilitates smooth Li growth, thereby suppressing the formation of dendrites. Notably, the symmetric cells using the new composite anodes exhibit superior electrochemical reversibility over 500 cycles, with the patternable LiFePO4//Li@graphene pouch cells displaying outstanding cycling performance. This graphene-hosted Li anode thus demonstrates great potential for Li batteries.

源语言英语
文章编号130967
期刊Chemical Engineering Journal
427
DOI
出版状态已出版 - 1 1月 2022

指纹

探究 'Toward uniform Li plating/stripping by optimizing Li-ion transport and nucleation of engineered graphene aerogel' 的科研主题。它们共同构成独一无二的指纹。

引用此