Total Variation Deconvolution-Based Enhancement of Spatial Resolution in Microwave Radiometer Measurements

Zhen Tan, Weidong Hu*, Zhihao Xu, Kaiqi Zhang, Shi Qiao, Linhai Jia

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The Microwave Imager has emerged as a pivotal payload within meteorological monitoring and assimilation systems, attributed to its comprehensive observational capabilities, which span all weather conditions, daily cycles, and extensive spatial ranges. Nonetheless, the resolution of the channel data from the Microwave Imager is constrained due to limitations inherent in the satellite payload design process. Consequently, this research introduces a remote sensing image restoration algorithm, leveraging Total Variation (TV) regularization deconvolution. Experimental outcomes, derived from both simulated and actual data, reveal that the method offers enhanced image restoration and potent noise suppression. The Peak Signal-to-Noise Ratio (PSNR) of the restored image attains a value of 38.7, while the Structural Similarity (SSIM) achieves a measurement of 0.97.

源语言英语
主期刊名Proceedings - 2023 Cross Strait Radio Science and Wireless Technology Conference, CSRSWTC 2023
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9798350358971
DOI
出版状态已出版 - 2023
活动2023 Cross Strait Radio Science and Wireless Technology Conference, CSRSWTC 2023 - Guilin, 中国
期限: 10 11月 202313 11月 2023

出版系列

姓名Proceedings - 2023 Cross Strait Radio Science and Wireless Technology Conference, CSRSWTC 2023

会议

会议2023 Cross Strait Radio Science and Wireless Technology Conference, CSRSWTC 2023
国家/地区中国
Guilin
时期10/11/2313/11/23

指纹

探究 'Total Variation Deconvolution-Based Enhancement of Spatial Resolution in Microwave Radiometer Measurements' 的科研主题。它们共同构成独一无二的指纹。

引用此