Tool Wear Condition Monitoring Method Based on Deep Learning with Force Signals

Yaping Zhang, Xiaozhi Qi, Tao Wang*, Yuanhang He*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

17 引用 (Scopus)

摘要

Tool wear condition monitoring is an important component of mechanical processing automation, and accurately identifying the wear status of tools can improve processing quality and production efficiency. This paper studied a new deep learning model, to identify the wear status of tools. The force signal was transformed into a two-dimensional image using continuous wavelet transform (CWT), short-time Fourier transform (STFT), and Gramian angular summation field (GASF) methods. The generated images were then fed into the proposed convolutional neural network (CNN) model for further analysis. The calculation results show that the accuracy of tool wear state recognition proposed in this paper was above 90%, which was higher than the accuracy of AlexNet, ResNet, and other models. The accuracy of the images generated using the CWT method and identified with the CNN model was the highest, which is attributed to the fact that the CWT method can extract local features of an image and is less affected by noise. Comparing the precision and recall values of the model, it was verified that the image obtained by the CWT method had the highest accuracy in identifying tool wear state. These results demonstrate the potential advantages of using a force signal transformed into a two-dimensional image for tool wear state recognition and of applying CNN models in this area. They also indicate the wide application prospects of this method in industrial production.

源语言英语
文章编号4595
期刊Sensors
23
10
DOI
出版状态已出版 - 5月 2023

指纹

探究 'Tool Wear Condition Monitoring Method Based on Deep Learning with Force Signals' 的科研主题。它们共同构成独一无二的指纹。

引用此