Time series data cleaning: From anomaly detection to anomaly repairing

Aoqian Zhang, Shaoxu Song, Jianmin Wang, Philip S. Yu

科研成果: 期刊稿件会议文章同行评审

113 引用 (Scopus)

摘要

Errors are prevalent in time series data, such as GPS trajectories or sensor readings. Existing methods focus more on anomaly detection but not on repairing the detected anomalies. By simply filtering out the dirty data via anomaly detection, applications could still be unreliable over the incomplete time series. Instead of simply discarding anomalies, we propose to (iteratively) repair them in time series data, by creatively bonding the beauty of temporal nature in anomaly detection with the widely considered minimum change principle in data repairing. Our major contributions include: (1) a novel framework of iterative minimum repairing (IMR) over time series data, (2) explicit analysis on convergence of the proposed iterative minimum repairing, and (3) efficient estimation of parameters in each iteration. Remarkably, with incremental computation, we reduce the complexity of parameter estimation from O(n) to O(1). Experiments on real datasets demonstrate the superiority of our proposal compared to the state-of-the-art approaches. In particular, we show that (the proposed) repairing indeed improves the time series classification application.

源语言英语
页(从-至)1046-1057
页数12
期刊Proceedings of the VLDB Endowment
10
10
DOI
出版状态已出版 - 1 6月 2017
已对外发布
活动43rd International Conference on Very Large Data Bases, VLDB 2017 - Munich, 德国
期限: 28 8月 20171 9月 2017

指纹

探究 'Time series data cleaning: From anomaly detection to anomaly repairing' 的科研主题。它们共同构成独一无二的指纹。

引用此