Time-scale mechanical behaviors of locust semi-lunar process cuticles under power amplification for rapid movements

Chao Wan*, Zhixiu Hao, Stanislav N. Gorb

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

The semi-lunar process (SLP) is a key component in the power amplification of locusts to achieve rapid movements. Its mechanical properties determine the amount of the power amplification and the subsequent locomotion performance. As previously reported, the SLP cuticle endures physiological dynamic loadings. However, the time-scale mechanical properties of the SLP are still unknown, especially under stress relaxation and cyclic loadings. In this paper, the SLP cuticles of adult desert locusts (Schistocerca gregaria) were studied using stress relaxation and cyclic tests, with loadings corresponding to the physiological loading conditions of the power amplification. The SLP cuticle was found to show pronounced stress relaxation behavior with the resultant force and an evident time shift between the maximal displacement and the maximal resultant force. The number of loading cycles before mechanical failure (life cycle number) increases when the SLP cuticle is cyclically loaded by a lower stress level. Moreover, the failure strength of the SLP at low cycles equals the physiological stress level in the power amplification, implying that the healing of the cuticle might contribute to the successful performance of numerous jumps in the course of the adult locust life. This study not only deepens our understanding of the power amplification mechanism of locust locomotion but also provides valuable knowledge for the design optimization of bioinspired jumping robots and elastic energy storage devices.

源语言英语
文章编号109742
期刊Journal of Biomechanics
104
DOI
出版状态已出版 - 7 5月 2020

指纹

探究 'Time-scale mechanical behaviors of locust semi-lunar process cuticles under power amplification for rapid movements' 的科研主题。它们共同构成独一无二的指纹。

引用此