TY - GEN
T1 - Three radar imaging methods based on the one-dimensional laser range profiles
AU - Mou, Yuan
AU - Wu, Zhen Sen
AU - Qu, Tan
AU - Liao, Run Gui
PY - 2013
Y1 - 2013
N2 - One-dimensional range profile is known as a simple radar imaging technology. Based on the imaging mechanism, the laser range profiles (LRPS) of the convex rotators in three different methods, which named as the Beam Scattering Method (BS method), Radar Cross Section Method (RCS method) and Surface Elements Method (SE method),were studied. In detail, BS method, which combined the laser beam pulse scattering theory and radar equation, is the very model that can be applied to the convex quadric rotary bodies, however, it may produce singular solutions in certain incident directions. The RCS method is just an extension of the theory of radar cross section theory and radar equation. According to the definition, the simplest forms of RCS which were then substituted into the radar equation were obtained, finally the one-dimensional range profiles were analytically resolved. The SE Method is a much more comprehensive theory to get the laser range profiles of arbitrary objects. The object should be first divided into numerous small triangle facets, and sum the backscattering power of these facets in the same distance, and in this way the final LRPS were deduced. In the meanwhile, the SE method is the most convenient way to evolve into the three-dimensional range profile. In the paper, the LRPS of a cone based on the three models above were simulated, it was found that the features and shape of each profiles were similar basically, but theoretical correction to SE method was still needed.
AB - One-dimensional range profile is known as a simple radar imaging technology. Based on the imaging mechanism, the laser range profiles (LRPS) of the convex rotators in three different methods, which named as the Beam Scattering Method (BS method), Radar Cross Section Method (RCS method) and Surface Elements Method (SE method),were studied. In detail, BS method, which combined the laser beam pulse scattering theory and radar equation, is the very model that can be applied to the convex quadric rotary bodies, however, it may produce singular solutions in certain incident directions. The RCS method is just an extension of the theory of radar cross section theory and radar equation. According to the definition, the simplest forms of RCS which were then substituted into the radar equation were obtained, finally the one-dimensional range profiles were analytically resolved. The SE Method is a much more comprehensive theory to get the laser range profiles of arbitrary objects. The object should be first divided into numerous small triangle facets, and sum the backscattering power of these facets in the same distance, and in this way the final LRPS were deduced. In the meanwhile, the SE method is the most convenient way to evolve into the three-dimensional range profile. In the paper, the LRPS of a cone based on the three models above were simulated, it was found that the features and shape of each profiles were similar basically, but theoretical correction to SE method was still needed.
KW - Beam scattering method
KW - Laser range profiles
KW - Radar cross section method
KW - Surface elements method
UR - http://www.scopus.com/inward/record.url?scp=84888161065&partnerID=8YFLogxK
U2 - 10.1117/12.2034018
DO - 10.1117/12.2034018
M3 - Conference contribution
AN - SCOPUS:84888161065
SN - 9780819497741
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - International Symposium on Photoelectronic Detection and Imaging 2013
T2 - 5th International Symposium on Photoelectronic Detection and Imaging, ISPDI 2013
Y2 - 25 June 2013 through 27 June 2013
ER -