TY - JOUR
T1 - Thermoelastic coupling effect analysis for gyroscope resonator from longitudinal and flexural vibrations
AU - Li, Changlong
AU - Gao, Shiqiao
AU - Niu, Shaohua
AU - Liu, Haipeng
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - The paper illustrates thermoelastic modeling, analysis and simulation solutions of gyroscope resonator from the longitudinal and transverse vibration modes. In the study, the sensitive components of gyroscope are the cantilever beams within the drive mode and the detection mode. Then, the effect of thermoelastic coupling, coupling strength on gyroscope performance is analyzed by two different numerical calculation methods, and the results are validated by FEM simulation solutions. The corresponding parameters which are analyzed in the study for thermoelatic coupling are temperature, thermoelastic damping (TED) and frequency shift ratio. It is found that the thermoelastic damping has the order of 10−4 at both transverse and longitudinal vibrations. And the shift frequency sharply increased and then gradually approaches the horizontal line at the longitudinal and flexural vibrations. Then the comparison of thermoelastic damping is studied at two vibration modes. Compared with longitudinal vibration, the thermoelastic damping for flexural vibration has a similar pattern, while the former’s peak value is twice lower than that of the latter.
AB - The paper illustrates thermoelastic modeling, analysis and simulation solutions of gyroscope resonator from the longitudinal and transverse vibration modes. In the study, the sensitive components of gyroscope are the cantilever beams within the drive mode and the detection mode. Then, the effect of thermoelastic coupling, coupling strength on gyroscope performance is analyzed by two different numerical calculation methods, and the results are validated by FEM simulation solutions. The corresponding parameters which are analyzed in the study for thermoelatic coupling are temperature, thermoelastic damping (TED) and frequency shift ratio. It is found that the thermoelastic damping has the order of 10−4 at both transverse and longitudinal vibrations. And the shift frequency sharply increased and then gradually approaches the horizontal line at the longitudinal and flexural vibrations. Then the comparison of thermoelastic damping is studied at two vibration modes. Compared with longitudinal vibration, the thermoelastic damping for flexural vibration has a similar pattern, while the former’s peak value is twice lower than that of the latter.
UR - http://www.scopus.com/inward/record.url?scp=84923872786&partnerID=8YFLogxK
U2 - 10.1007/s00542-015-2464-0
DO - 10.1007/s00542-015-2464-0
M3 - Article
AN - SCOPUS:84923872786
SN - 0946-7076
VL - 22
SP - 1029
EP - 1042
JO - Microsystem Technologies
JF - Microsystem Technologies
IS - 5
ER -