TY - JOUR
T1 - Thermal decomposition and combustion performance of high-energy ammonium perchlorate-based molecular perovskite
AU - Deng, Peng
AU - Wang, Huixin
AU - Yang, Xinbo
AU - Ren, Hui
AU - Jiao, Qingjie
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/6/25
Y1 - 2020/6/25
N2 - The development of high-energy ammonium perchlorate (NH4ClO4, AP)-based energetic materials is of great significance for promoting their potential applications. In this study, AP-based molecular perovskite energetic materials (H2dabco)[NH4(ClO4)3] were prepared via molecular assembly strategy with the facile one-pot reaction of AP, HClO4 and triethylenediamine (dabco). The as-obtained sample was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR). The thermal decomposition and combustion performance was investigated by thermo-gravimetric/differential scanning calorimeter (TG-DSC), high speed photography and three-dimensional FT-IR. The results showed that combined with the oxidizer perchlorate and fuel dabco at the molecular level, ternary molecular perovskite (H2dabco)[NH4(ClO4)3] possessed a more stable thermal decomposition temperature (385.0 °C) than the monocomponent AP and the heat release is also as high as 3421 J g−1. The thermal decomposition activation energy (181.070 kJ mol−1) of thermal decomposition of (H2dabco)[NH4(ClO4)3] had been expectably reduced from the activation energy (200.259 kJ mol−1) of high-temperature decomposition stage of AP, despite of low-temperature decomposition stage. The synergistic catalysis thermal decomposition mechanism based on the molecular perovskite structures was proposed. And the combustion performance demonstrated molecular perovskite (H2dabco)[NH4(ClO4)3] had a high energy-releasing efficiency. This work provides a proof-of-principle concept for the design and fabrication of high-performance solid propellants based on molecular perovskite (H2dabco)[NH4(ClO4)3].
AB - The development of high-energy ammonium perchlorate (NH4ClO4, AP)-based energetic materials is of great significance for promoting their potential applications. In this study, AP-based molecular perovskite energetic materials (H2dabco)[NH4(ClO4)3] were prepared via molecular assembly strategy with the facile one-pot reaction of AP, HClO4 and triethylenediamine (dabco). The as-obtained sample was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR). The thermal decomposition and combustion performance was investigated by thermo-gravimetric/differential scanning calorimeter (TG-DSC), high speed photography and three-dimensional FT-IR. The results showed that combined with the oxidizer perchlorate and fuel dabco at the molecular level, ternary molecular perovskite (H2dabco)[NH4(ClO4)3] possessed a more stable thermal decomposition temperature (385.0 °C) than the monocomponent AP and the heat release is also as high as 3421 J g−1. The thermal decomposition activation energy (181.070 kJ mol−1) of thermal decomposition of (H2dabco)[NH4(ClO4)3] had been expectably reduced from the activation energy (200.259 kJ mol−1) of high-temperature decomposition stage of AP, despite of low-temperature decomposition stage. The synergistic catalysis thermal decomposition mechanism based on the molecular perovskite structures was proposed. And the combustion performance demonstrated molecular perovskite (H2dabco)[NH4(ClO4)3] had a high energy-releasing efficiency. This work provides a proof-of-principle concept for the design and fabrication of high-performance solid propellants based on molecular perovskite (H2dabco)[NH4(ClO4)3].
KW - (Hdabco)[NH(ClO)]
KW - Combustion
KW - Molecular perovskite
KW - Synergistic catalysis reaction
KW - Thermal decomposition performance
UR - http://www.scopus.com/inward/record.url?scp=85079347662&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2020.154257
DO - 10.1016/j.jallcom.2020.154257
M3 - Article
AN - SCOPUS:85079347662
SN - 0925-8388
VL - 827
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 154257
ER -