Thermal chemistry and decomposition behaviors of energetic materials with trimerizing furoxan skeleton

Jing Zhou, Meng Huang, Junlin Zhang*, Lianjie Zhai, Yilin Cao, Xiaocong Wang*, Lili Qiu, Bozhou Wang*, Zihui Meng

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Trimerizing furoxans are ideal molecular skeletons for the construction of high energetic substances due to their compact structures and high enthalpy of formations. To explore and compare the thermal behaviors of energetic materials with tandem trimerizing furoxan molecular skeleton, we reported the first systematic research on the thermochemical behaviors and decomposition mechanism of 3,4-bis(3-fluorodinitromethylfuroxan-4-yl)furoxan (BFTF), 3,4-bis(3-cyanofurazan)furazan oxide (BCTFO) and benzotrifuroxan (BTF). According to the research results of the DSC-TG experiments, both the substituted furoxan based energetic compounds (BCTFO and BFTF) exhibited low melting points and complicated thermal decomposition behaviors around 240 °C, while the melting point of unsubstituted furoxan (BTF) was much higher. Their detailed decomposition mechanisms were proposed based on the experimental results through tandem techniques including in-situ FTIR spectroscopy method and DSC-TG-FTIR-MS quadruple technology, which indicated that the cleavage of substituent would trigger the decompositions of BFTF and the decomposition of trimerizing furoxan skeletons almost synchronous occurrence with substituents in BCTFO. The self-oxidation-reduction of the linear and annular trimerizing furoxans lead to similar decomposition fragmented small molecule products.

源语言英语
文章编号e202300267
期刊Propellants, Explosives, Pyrotechnics
49
4
DOI
出版状态已出版 - 4月 2024

指纹

探究 'Thermal chemistry and decomposition behaviors of energetic materials with trimerizing furoxan skeleton' 的科研主题。它们共同构成独一无二的指纹。

引用此