TY - JOUR
T1 - Theoretical study of effects of introducing varying linkages into bis-triazoles on energetic performance
AU - Wu, Jinting
AU - Xu, Jin
AU - Li, Hongbo
AU - Zhang, Jianguo
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
PY - 2021/2
Y1 - 2021/2
N2 - A series of novel bis-triazole compounds was designed by combining high-energy functionalities (nitro and nitramino groups) as substituents with each triazole and incorporating of varying linkages into the bis-triazoles. Then, their heats of formation (HOFs), energetic properties, HOMO-LUMO, electrostatic potential, and impact sensitivity were studied theoretically to facilitate further developments. In general, all the designed compounds possess much higher HOFs than RDX, -CH2-CH2-, -N=N-, or -NH-NH- linkages contribute to increase the HOFs, while incorporation of the bridge group -O-CH2-CH2-O- shows negative effect on HOFs. Detonation properties of most of the designed compounds can be comparable with or even better than ones of RDX, suggesting that designing the bridged bis-triazoles-based derivatives with energy-rich substituents is an efficient method to obtain potential energetic compounds. Considering the detonation performance and impact sensitivity, -NH-(I), -N=N- (V), and -NH-NH- (VI) are favorable bridged groups between energetic moieties for designing efficient energetic materials (EMs).
AB - A series of novel bis-triazole compounds was designed by combining high-energy functionalities (nitro and nitramino groups) as substituents with each triazole and incorporating of varying linkages into the bis-triazoles. Then, their heats of formation (HOFs), energetic properties, HOMO-LUMO, electrostatic potential, and impact sensitivity were studied theoretically to facilitate further developments. In general, all the designed compounds possess much higher HOFs than RDX, -CH2-CH2-, -N=N-, or -NH-NH- linkages contribute to increase the HOFs, while incorporation of the bridge group -O-CH2-CH2-O- shows negative effect on HOFs. Detonation properties of most of the designed compounds can be comparable with or even better than ones of RDX, suggesting that designing the bridged bis-triazoles-based derivatives with energy-rich substituents is an efficient method to obtain potential energetic compounds. Considering the detonation performance and impact sensitivity, -NH-(I), -N=N- (V), and -NH-NH- (VI) are favorable bridged groups between energetic moieties for designing efficient energetic materials (EMs).
KW - Bis-triazoles
KW - Detonation performance
KW - Linkages
KW - Theoretical study
UR - http://www.scopus.com/inward/record.url?scp=85098990651&partnerID=8YFLogxK
U2 - 10.1007/s00894-020-04636-6
DO - 10.1007/s00894-020-04636-6
M3 - Article
C2 - 33411063
AN - SCOPUS:85098990651
SN - 1610-2940
VL - 27
JO - Journal of Molecular Modeling
JF - Journal of Molecular Modeling
IS - 2
M1 - 24
ER -