TY - JOUR
T1 - Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester
AU - Li, Ping
AU - Gao, Shiqiao
AU - Cai, Huatong
AU - Wu, Lisen
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - A nonlinear hybrid piezoelectric (PE) and electromagnetic (EM) energy harvester is proposed, and its working model is established. Then the vibration response, output power, voltage and current of nonlinear hybrid energy harvester subjected to harmonic excitation are derived by the method of harmonic balance, and their normalized forms are obtained by the defined dimensionless parameters. Through numerical simulation and experimental test, the effects of nonlinear factor, load resistance, excitation frequency and the excitation acceleration on amplitude and electrical performances of hybrid energy harvester are studied, which shows that the numerical results are in agreement with that of experimental tests. Furthermore, it can be concluded that the bigger nonlinear factor, the lower resonant frequency; moreover, there is an optimal nonlinear factor that make the harvester output the maximum power. In addition, the output power of nonlinear hybrid energy harvester reaches the maximum at the optimal loads of PE and EM elements, which can be altered by the excitation acceleration. Meanwhile, the resonant frequency corresponding to the maximum power rises firstly and then falls with PE load enhancing, while it rises with EM load decreasing; furthermore, the frequency lowers with the acceleration increasing. Besides, the larger acceleration is, the bigger power output and the wider 3 dB bandwidth are. Compared with performances of linear hybrid energy harvester, the designed nonlinear energy harvester not only can reduce the resonant frequency and enlarger the bandwidth but also improve the output power.
AB - A nonlinear hybrid piezoelectric (PE) and electromagnetic (EM) energy harvester is proposed, and its working model is established. Then the vibration response, output power, voltage and current of nonlinear hybrid energy harvester subjected to harmonic excitation are derived by the method of harmonic balance, and their normalized forms are obtained by the defined dimensionless parameters. Through numerical simulation and experimental test, the effects of nonlinear factor, load resistance, excitation frequency and the excitation acceleration on amplitude and electrical performances of hybrid energy harvester are studied, which shows that the numerical results are in agreement with that of experimental tests. Furthermore, it can be concluded that the bigger nonlinear factor, the lower resonant frequency; moreover, there is an optimal nonlinear factor that make the harvester output the maximum power. In addition, the output power of nonlinear hybrid energy harvester reaches the maximum at the optimal loads of PE and EM elements, which can be altered by the excitation acceleration. Meanwhile, the resonant frequency corresponding to the maximum power rises firstly and then falls with PE load enhancing, while it rises with EM load decreasing; furthermore, the frequency lowers with the acceleration increasing. Besides, the larger acceleration is, the bigger power output and the wider 3 dB bandwidth are. Compared with performances of linear hybrid energy harvester, the designed nonlinear energy harvester not only can reduce the resonant frequency and enlarger the bandwidth but also improve the output power.
UR - http://www.scopus.com/inward/record.url?scp=84922511654&partnerID=8YFLogxK
U2 - 10.1007/s00542-015-2440-8
DO - 10.1007/s00542-015-2440-8
M3 - Article
AN - SCOPUS:84922511654
SN - 0946-7076
VL - 22
SP - 727
EP - 739
JO - Microsystem Technologies
JF - Microsystem Technologies
IS - 4
ER -