摘要
The physics of the electronic excitation in semiconductors induced by sub-GeV dark matter (DM) have been extensively discussed in literature, under the framework of the standard plane wave (PW) and pseudopotential calculation scheme. In this paper, we investigate the implication of the all-electron (AE) reconstruction on estimation of the DM-induced electronic transition event rates. As a benchmark study, we first calculate the wavefunctions in silicon and germanium bulk crystals based on both the AE and pseudo (PS) schemes within the projector augmented wave (PAW) framework, and then make comparisons between the calculated excitation event rates obtained from these two approaches. It turns out that in process where large momentum transfer is kinetically allowed, the two calculated event rates can differ by a factor of a few. Such discrepancies are found to stem from the high-momentum components neglected in the PS scheme. It is thus implied that the correction from the AE wavefunction in the core region is necessary for an accurate estimate of the DM-induced transition event rate in semiconductors.
源语言 | 英语 |
---|---|
文章编号 | 149 |
期刊 | Journal of High Energy Physics |
卷 | 2019 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 1 1月 2019 |
已对外发布 | 是 |