TY - JOUR
T1 - The structural evolution of magnesium acetate complex in aerosols by FTIR-ATR spectra
AU - Pang, Shu Feng
AU - Wu, Chang Qin
AU - Zhang, Qing Nuan
AU - Zhang, Yun Hong
N1 - Publisher Copyright:
© 2015 Elsevier B.V. All rights reserved.
PY - 2015/5/5
Y1 - 2015/5/5
N2 - The structural evolution of magnesium acetate complex in aerosols with the relative humidity (RH) has been studied by ATR-FTIR technique. When the RH is higher than 66%, the ν4 band lies at 929 cm-1 meaning the free CH3COO- ions in Mg(CH3COO)2 droplets. At the 66% RH, ν4 band positioned at 939 cm-1, accompanying the ν8 band shift to 1554 cm-1, which indicats that the free CH3COO- ions are bounded to Mg2+ ions to form [Mg(H2O)5(CH3COO)]+ species. At the 57.7% RH, the ν8-COO band shifts to 1556 cm-1 accompanying the ν3 band at 1421 cm-1 and the appearance of shoulder at 1452 cm-1, which suggests the formation of chain-structure connected by the bridging bidentate of Mg2(CH3COO)4(H2O)2. In the region of 57.7-18.7% RH, the shoulder at 1452 cm-1 increases with the decrease in RH, showing the increase of Mg2(CH3COO)4(H2O)2. From the water-content, the water-transfer from and to the surface of the aerosols became limited, showing the aerosols enter the gel state. Below 18.7%RH, water-loss becomes rapid and the ν8 band performs blue-shift. At 3.8%RH, the ν8 band positioned at 1581 cm-1, showing the anhydrous Mg(CH3COO)2 solid, which can be reflected by the ν4 band at 947 cm-1. During the humidification process, the reverse structural evolution can be found.
AB - The structural evolution of magnesium acetate complex in aerosols with the relative humidity (RH) has been studied by ATR-FTIR technique. When the RH is higher than 66%, the ν4 band lies at 929 cm-1 meaning the free CH3COO- ions in Mg(CH3COO)2 droplets. At the 66% RH, ν4 band positioned at 939 cm-1, accompanying the ν8 band shift to 1554 cm-1, which indicats that the free CH3COO- ions are bounded to Mg2+ ions to form [Mg(H2O)5(CH3COO)]+ species. At the 57.7% RH, the ν8-COO band shifts to 1556 cm-1 accompanying the ν3 band at 1421 cm-1 and the appearance of shoulder at 1452 cm-1, which suggests the formation of chain-structure connected by the bridging bidentate of Mg2(CH3COO)4(H2O)2. In the region of 57.7-18.7% RH, the shoulder at 1452 cm-1 increases with the decrease in RH, showing the increase of Mg2(CH3COO)4(H2O)2. From the water-content, the water-transfer from and to the surface of the aerosols became limited, showing the aerosols enter the gel state. Below 18.7%RH, water-loss becomes rapid and the ν8 band performs blue-shift. At 3.8%RH, the ν8 band positioned at 1581 cm-1, showing the anhydrous Mg(CH3COO)2 solid, which can be reflected by the ν4 band at 947 cm-1. During the humidification process, the reverse structural evolution can be found.
KW - FTIR-ATR
KW - Humidification
KW - Mg(CHCOO)
KW - RH
KW - Structural evolution
UR - http://www.scopus.com/inward/record.url?scp=84922896918&partnerID=8YFLogxK
U2 - 10.1016/j.molstruc.2015.01.034
DO - 10.1016/j.molstruc.2015.01.034
M3 - Article
AN - SCOPUS:84922896918
SN - 0022-2860
VL - 1087
SP - 46
EP - 50
JO - Journal of Molecular Structure
JF - Journal of Molecular Structure
ER -