The single-cell transcriptomic landscape of the topological differences in mammalian auditory receptors

Xiangyu Ma, Xin Chen, Yuwei Che, Siyao Zhu, Xinlin Wang, Shan Gao, Jiheng Wu, Fanliang Kong, Cheng Cheng, Yunhao Wu, Jiamin Guo, Jieyu Qi*, Renjie Chai*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Mammalian hair cells (HCs) are arranged spirally along the cochlear axis and correspond to different frequency ranges. Serving as primary sound detectors, HCs spatially segregate component frequencies into a topographical map. HCs display significant diversity in anatomical and physiological characteristics, yet little is known about the organization of the cochleotopic map of HCs or the molecules involved in this process. Using single-cell RNA sequencing, we determined the distinct molecular profiles of inner hair cells and outer hair cells, and we identified numerous position-dependent genes that were expressed as gradients. Newly identified genes such as Ptn, Rxra, and Nfe2l2 were found to be associated with tonotopy. We employed the SCENIC algorithm to predict the transcription factors that potentially shape these tonotopic gradients. Furthermore, we confirmed that Nfe2l2, a tonotopy-related transcription factor, is critical in mice for sensing low-to-medium sound frequencies in vivo. the analysis of cell-cell communication revealed potential receptor-ligand networks linking inner hair cells to spiral ganglion neurons, including pathways such as BDNF-Ntrk and PTN-Scd4, which likely play essential roles in tonotopic maintenance. Overall, these findings suggest that molecular gradients serve as the organizing principle for maintaining the selection of sound frequencies by HCs.

源语言英语
页(从-至)2398-2410
页数13
期刊Science China Life Sciences
67
11
DOI
出版状态已出版 - 11月 2024

指纹

探究 'The single-cell transcriptomic landscape of the topological differences in mammalian auditory receptors' 的科研主题。它们共同构成独一无二的指纹。

引用此