摘要
We study the Chern-Ricci flow, an evolution equation of Hermitian metrics, on a family of Oeljeklaus-Toma (OT-) manifolds that are non-Kähler compact complex manifolds with negative Kodaira dimension. We prove that after an initial conformal change, the flow converges in the Gromov-Hausdorò sense to a torus with a flat Riemannianmetric determined by the OT-manifolds themselves.
源语言 | 英语 |
---|---|
页(从-至) | 220-240 |
页数 | 21 |
期刊 | Canadian Journal of Mathematics |
卷 | 69 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 2月 2017 |
指纹
探究 'The chern-ricci flow on oeljeklaus-Toma manifolds' 的科研主题。它们共同构成独一无二的指纹。引用此
Zheng, T. (2017). The chern-ricci flow on oeljeklaus-Toma manifolds. Canadian Journal of Mathematics, 69(1), 220-240. https://doi.org/10.4153/CJM-2015-053-0