The chern-ricci flow on oeljeklaus-Toma manifolds

Tao Zheng*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

12 引用 (Scopus)

摘要

We study the Chern-Ricci flow, an evolution equation of Hermitian metrics, on a family of Oeljeklaus-Toma (OT-) manifolds that are non-Kähler compact complex manifolds with negative Kodaira dimension. We prove that after an initial conformal change, the flow converges in the Gromov-Hausdorò sense to a torus with a flat Riemannianmetric determined by the OT-manifolds themselves.

源语言英语
页(从-至)220-240
页数21
期刊Canadian Journal of Mathematics
69
1
DOI
出版状态已出版 - 2月 2017

指纹

探究 'The chern-ricci flow on oeljeklaus-Toma manifolds' 的科研主题。它们共同构成独一无二的指纹。

引用此