The Backus-Gilbert method for signals in reproducing kernel Hilbert spaces and wavelet subspaces

X. G. Xia*, M. Z. Nashed

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

16 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 16
  • Captures
    • Readers: 7
see details

摘要

The Backus-Gilbert (BG) method is an inversion procedure for a moment problem when moments of a function and related kernel functions are known. In this paper, we consider the BG method when, in addition, the signal to be recovered is known a priori to be in certain reproducing kernel Hilbert spaces (RKHS), such as wavelet subspaces. We show that better performance may be achieved over the original BG method. In particular, under the D-criterion the BG method with RKHS information for a sampled signal in wavelet subspaces can completely recover the original signal, while the one without any additional information can only provide a constant-valued signal.

源语言英语
文章编号018
页(从-至)785-804
页数20
期刊Inverse Problems
10
3
DOI
出版状态已出版 - 1994
已对外发布

指纹

探究 'The Backus-Gilbert method for signals in reproducing kernel Hilbert spaces and wavelet subspaces' 的科研主题。它们共同构成独一无二的指纹。

引用此

Xia, X. G., & Nashed, M. Z. (1994). The Backus-Gilbert method for signals in reproducing kernel Hilbert spaces and wavelet subspaces. Inverse Problems, 10(3), 785-804. 文章 018. https://doi.org/10.1088/0266-5611/10/3/018