The Author-Topic-Community model for author interest profiling and community discovery

Chunshan Li, William K. Cheung, Yunming Ye, Xiaofeng Zhang*, Dianhui Chu, Xin Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

34 引用 (Scopus)

摘要

In this paper, we propose a generative model named the author-topic-community (ATC) model for representing a corpus of linked documents. The ATC model allows each author to be associated with a topic distribution and a community distribution as its model parameters. A learning algorithm based on variational inference is derived for the model parameter estimation where the two distributions are essentially reinforcing each other during the estimation. We compare the performance of the ATC model with two related generative models using first synthetic data sets and then real data sets, which include a research community data set, a blog data set, a news-sharing data set, and a microblogging data set. The empirical results obtained confirm that the proposed ATC model outperforms the existing models for tasks such as author interest profiling and author community discovery. We also demonstrate how the inferred ATC model can be used to characterize the roles of users/authors in online communities.

源语言英语
页(从-至)359-383
页数25
期刊Knowledge and Information Systems
44
2
DOI
出版状态已出版 - 22 8月 2015

指纹

探究 'The Author-Topic-Community model for author interest profiling and community discovery' 的科研主题。它们共同构成独一无二的指纹。

引用此