The Anisotropic Chemical Reaction Mechanism of 1,3,3-trinitroazetidine (TNAZ) under Different Shock Wave Directions by ReaxFF Reactive Molecular Dynamics Simulations

Junjian Li, Junying Wu*, Yiping Shang, Muhammad Mudassar

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

1,3,3-Trinitroazetidine (TNAZ) has good thermal stability and low shock sensitivity, among other properties, and it has broad prospects in insensitive ammunition applications. In this study, a molecular dynamics calculation based on the ReaxFF-lg force field and multiscale shock technique (MSST) was used to simulate the shock-induced chemical reaction of TNAZ with different shock wave directions. The results showed that the shock sensitivity of TNAZ was in the order of [100] > [010] > [001]. There were significant differences in molecular arrangements in different shock directions, which affected the reaction rate and reaction path in different directions. The molecular arrangement in the [010] and [001] directions formed a “buffer” effect. The formation and cleavage of bonds, formation of small molecules and growth of clusters were analyzed to show the effect of the “buffer”. The polymerization reactions in the [010] and [001] directions appeared later than that in the [100] direction, and the cluster growth in the [010] and [001] directions was slower than that in the [100] direction. In different shock loading directions, the formation and cleavage mechanisms of the N-O bonds of the TNAZ molecules were different, which resulted in differences in the initial reaction path and reaction rate in the three directions.

源语言英语
文章编号5773
期刊Molecules
27
18
DOI
出版状态已出版 - 9月 2022

指纹

探究 'The Anisotropic Chemical Reaction Mechanism of 1,3,3-trinitroazetidine (TNAZ) under Different Shock Wave Directions by ReaxFF Reactive Molecular Dynamics Simulations' 的科研主题。它们共同构成独一无二的指纹。

引用此