Text-to-Image Synthesis with Threshold-Equipped Matching-Aware GAN

Jun Shang, Wenxin Yu*, Lu Che, Zhiqiang Zhang, Hongjie Cai, Zhiyu Deng, Jun Gong, Peng Chen

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In this paper, we propose a novel Equipped with Threshold Matching-Aware Generative Adversarial Network (ETMA-GAN) for text-to-image synthesis. By filtering inaccurate negative samples, the discriminator can more accurately determine whether the generator has generated the images correctly according to the descriptions. In addition, to enhance the discriminative model’s ability to discriminate and capture key semantic information, a word fine-grained supervisor is constructed, which in turn drives the generative model to achieve high-quality image detail synthesis. Numerous experiments and ablation studies on Caltech-UCSD Birds 200 (CUB) and Microsoft Common Objects in Context (MS COCO) datasets demonstrate the effectiveness and superiority of the proposed method over existing methods. In terms of subjective and objective evaluations, the model presented in this study has more advantages than the recently available state-of-the-art methods, especially regarding synthetic images with a higher degree of realism and better conformity to text descriptions.

源语言英语
主期刊名Neural Information Processing - 30th International Conference, ICONIP 2023, Proceedings
编辑Biao Luo, Long Cheng, Zheng-Guang Wu, Hongyi Li, Chaojie Li
出版商Springer Science and Business Media Deutschland GmbH
161-172
页数12
ISBN(印刷版)9789819981472
DOI
出版状态已出版 - 2024
已对外发布
活动30th International Conference on Neural Information Processing, ICONIP 2023 - Changsha, 中国
期限: 20 11月 202323 11月 2023

出版系列

姓名Communications in Computer and Information Science
1966 CCIS
ISSN(印刷版)1865-0929
ISSN(电子版)1865-0937

会议

会议30th International Conference on Neural Information Processing, ICONIP 2023
国家/地区中国
Changsha
时期20/11/2323/11/23

指纹

探究 'Text-to-Image Synthesis with Threshold-Equipped Matching-Aware GAN' 的科研主题。它们共同构成独一无二的指纹。

引用此