摘要
The scale factor of fiber optic gyroscope (FOG) varied with the environment temperature. This nonlinear variation seriously influences the precision of the FOG. In this article, the back propagation neural network (BPNN) based on chaos particle swarm optimization (CPSO) is used to compensate the scale factor error. It is testified by experiment, that CPSO-BPNN algorithm is an ideal method to fit the variation of scale factor with temperature, which can greatly decrease the angular rate error of FOG caused by scale factor error and guarantee the measuring precision of FOG at different temperature.
源语言 | 英语 |
---|---|
主期刊名 | 2010 Chinese Control and Decision Conference, CCDC 2010 |
页 | 2898-2901 |
页数 | 4 |
DOI | |
出版状态 | 已出版 - 2010 |
活动 | 2010 Chinese Control and Decision Conference, CCDC 2010 - Xuzhou, 中国 期限: 26 5月 2010 → 28 5月 2010 |
出版系列
姓名 | 2010 Chinese Control and Decision Conference, CCDC 2010 |
---|
会议
会议 | 2010 Chinese Control and Decision Conference, CCDC 2010 |
---|---|
国家/地区 | 中国 |
市 | Xuzhou |
时期 | 26/05/10 → 28/05/10 |
指纹
探究 'Temperature compensation of FOG scale factor based on CPSO-BPNN' 的科研主题。它们共同构成独一无二的指纹。引用此
Zhao, D., Chen, J., Han, Y., Song, C., & Liu, Z. (2010). Temperature compensation of FOG scale factor based on CPSO-BPNN. 在 2010 Chinese Control and Decision Conference, CCDC 2010 (页码 2898-2901). 文章 5498692 (2010 Chinese Control and Decision Conference, CCDC 2010). https://doi.org/10.1109/CCDC.2010.5498692