TY - JOUR
T1 - Technological roadmap towards optimal decarbonization development of China's iron and steel industry
AU - Liu, Xianmei
AU - Peng, Rui
AU - Bai, Caiquan
AU - Chi, Yuanying
AU - Li, Hao
AU - Guo, Pibin
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/12/1
Y1 - 2022/12/1
N2 - China's iron and steel (IS) industry contributes approximately 16 % of the nation's total CO2 emissions. This study evaluates the environmental impact of each step in the production process based on the life cycle assessment method. It then explores potential deep decarbonisation pathways, developing an integrated dynamic model to meet the carbon neutrality target. The results reveal three primary findings. (1) In 2020, the blast furnace-basic oxygen furnace contributed significantly to the global warming potential −1.77 E−8 kg CO2 equivalents per year (eq/yr) higher than the electric arc furnace—and the blast furnace process makes the largest contribution in ironmaking (8.9E−9 kg CO2 eq/yr). (2) Converter negative energy steelmaking technology has the highest energy savings at 39.07 million tons of coal equivalent (Mtce) and an emissions-reduction potential of 72.01 Mt. Its mitigation cost is 69 CNY/t CO2, followed by thick-layer sintering (30.21 Mtce, 61.21 Mt. and 70 CNY/t CO2) and the application of dry vacuum system for molten steel degassing circulation (26.17 Mtce, 56.03 Mt. and 102 CNY/t CO2). (3) Technological improvement could significantly impact the IS industry, reducing CO2 emissions through production structure improvement, technological development and ultra-low emissions technology, from 789 Mt. in a business-as-usual scenario to 516 Mt., 261 Mt. and 157 Mt. in 2060, respectively.
AB - China's iron and steel (IS) industry contributes approximately 16 % of the nation's total CO2 emissions. This study evaluates the environmental impact of each step in the production process based on the life cycle assessment method. It then explores potential deep decarbonisation pathways, developing an integrated dynamic model to meet the carbon neutrality target. The results reveal three primary findings. (1) In 2020, the blast furnace-basic oxygen furnace contributed significantly to the global warming potential −1.77 E−8 kg CO2 equivalents per year (eq/yr) higher than the electric arc furnace—and the blast furnace process makes the largest contribution in ironmaking (8.9E−9 kg CO2 eq/yr). (2) Converter negative energy steelmaking technology has the highest energy savings at 39.07 million tons of coal equivalent (Mtce) and an emissions-reduction potential of 72.01 Mt. Its mitigation cost is 69 CNY/t CO2, followed by thick-layer sintering (30.21 Mtce, 61.21 Mt. and 70 CNY/t CO2) and the application of dry vacuum system for molten steel degassing circulation (26.17 Mtce, 56.03 Mt. and 102 CNY/t CO2). (3) Technological improvement could significantly impact the IS industry, reducing CO2 emissions through production structure improvement, technological development and ultra-low emissions technology, from 789 Mt. in a business-as-usual scenario to 516 Mt., 261 Mt. and 157 Mt. in 2060, respectively.
KW - Blast furnace ironmaking
KW - Carbon neutrality
KW - Electric arc furnace
KW - IS industry
KW - Technological improvement
UR - http://www.scopus.com/inward/record.url?scp=85136044157&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2022.157701
DO - 10.1016/j.scitotenv.2022.157701
M3 - Article
C2 - 35964747
AN - SCOPUS:85136044157
SN - 0048-9697
VL - 850
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 157701
ER -