Task Offloading Strategy of Vehicular Networks Based on Improved Bald Eagle Search Optimization Algorithm

Xianhao Shen, Zhaozhan Chang, Xiaolan Xie*, Shaohua Niu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

To reduce computing delay and energy consumption in the Vehicular networks, the total cost of task offloading, namely delay and energy consumption, is studied. A task offloading model combining local vehicle computing, MEC (Mobile Edge Computing) server computing, and cloud computing is proposed. The model not only considers the priority relationship of tasks, but also considers the delay and energy consumption of the system. A computational offloading decision method IBES based on an improved bald eagle search optimization algorithm is designed, which introduces Tent chaotic mapping, Levy Flight mechanism and Adaptive weights into the bald eagle search optimization algorithm to increase initial population diversity, enhance local search and global convergence. The simulation results show that the total cost of IBES is 33.07% and 22.73% lower than that of PSO and BES, respectively.

源语言英语
文章编号9308
期刊Applied Sciences (Switzerland)
12
18
DOI
出版状态已出版 - 9月 2022

指纹

探究 'Task Offloading Strategy of Vehicular Networks Based on Improved Bald Eagle Search Optimization Algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此