TARGET CLASSIFICATION BASED ON RADAR TRACK USING BILSTM

Hanqing Li, Sheng Luo*, Hongyu Wang, Yanhua Wang, Liang Zhang, Yang Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The track information is an important feature for radar target recognition. In this paper, the authors propose to classify targets based on radar track using bi-directional long short-term memory (BiLSTM) and self-attention mechanism. More specifically, the forward and backward operation in BiLSTM is able to capture temporal dependence of the track. The resulting deep resprentations of the track is refined by a self-attention mechanism to enhance the most discriminative parts. A fully connected layer followed by softmax operator is used to determine the type of the track. Experimental results show that the proposed method outperforms conventional algorithms.

源语言英语
主期刊名IET Conference Proceedings
出版商Institution of Engineering and Technology
369-373
页数5
2020
版本9
ISBN(电子版)9781839535406
DOI
出版状态已出版 - 2020
活动5th IET International Radar Conference, IET IRC 2020 - Virtual, Online
期限: 4 11月 20206 11月 2020

会议

会议5th IET International Radar Conference, IET IRC 2020
Virtual, Online
时期4/11/206/11/20

指纹

探究 'TARGET CLASSIFICATION BASED ON RADAR TRACK USING BILSTM' 的科研主题。它们共同构成独一无二的指纹。

引用此