Take-Off Trajectory Optimization of a Pigeon-Inspired Flapping Wing Robot

Weimin Huang, Shi Zhang, Yishi Shen, Rundong Luo, Qing Shi*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Birds take off to provide a rapid transition between ground and airborne for predator avoidance and flight initiation. This approach could extend the range of applications for flapping-wing robots. The hard-to-model, unsteady aerodynamics lead to less accurate control of robots. In addition, the success of a take-off is predicated on the need to choose an optimal flight path while sustain the body attitude. In this paper, we present a trajectory optimization algorithm for implementing the take-off of a flapping-wing robot. To accurately model the unsteady aerodynamics, the amplitude of the passive twisting angle was estimated using load cell experiment. Subsequently, a trajectory optimization of the robot's take-off at a height of 1 m was performed with minimum energy consumption as the objective function. We validated this method using a non-linear optimization simulation and demonstrated a flight of a 280 g flapping-wing robot. The average error between the simulation and the actual flight is less than 10%, demonstrating the effectiveness of the trajectory optimization algorithm. Overall, this work paves the way towards the application of flapping-wing robots for autonomous outdoor flight.

源语言英语
主期刊名Proceedings of 2023 IEEE International Conference on Unmanned Systems, ICUS 2023
编辑Rong Song
出版商Institute of Electrical and Electronics Engineers Inc.
767-772
页数6
ISBN(电子版)9798350316308
DOI
出版状态已出版 - 2023
活动2023 IEEE International Conference on Unmanned Systems, ICUS 2023 - Hefei, 中国
期限: 13 10月 202315 10月 2023

出版系列

姓名Proceedings of 2023 IEEE International Conference on Unmanned Systems, ICUS 2023

会议

会议2023 IEEE International Conference on Unmanned Systems, ICUS 2023
国家/地区中国
Hefei
时期13/10/2315/10/23

指纹

探究 'Take-Off Trajectory Optimization of a Pigeon-Inspired Flapping Wing Robot' 的科研主题。它们共同构成独一无二的指纹。

引用此