TY - JOUR
T1 - Synthesis of a Series of Dual-Functional Chelated Titanate Bonding Agents and Their Application Performances in Composite Solid Propellants
AU - Lin, Guomin
AU - Chang, Yixue
AU - Chen, Yu
AU - Zhang, Wei
AU - Ye, Yanchun
AU - Guo, Yanwen
AU - Jin, Shaohua
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/11/2
Y1 - 2020/11/2
N2 - Titanate-based bonding agents are a class of efficient bonding agents for improving the mechanical properties of composite solid propellants, a kind of special composite material. However, high solid contents often deteriorate the rheological properties of propellant slurry, which limits the application of bonding agents. To solve this problem, a series of long-chain alkyl chelated titanate binders, N-n-octyl-N, N-dihydroxyethyl-lactic acid-titanate (DLT-8), N-n-dodecyl-N, N-dihydroxyethyl-lactic acid-titanate (DLT-12), N-n-hexadecyl-N, N-Dihydroxyethyl-lactic acid-titanate (DLT-16), were designed and synthesized in the present work. The infrared absorption spectral changes of solid propellants caused by binder coating and adhesion degrees of the bonding agents on the oxidant surface were determined by micro-infrared microscopy (MIR) and X-ray photoelectron spectroscopy (XPS), respectively, to characterize the interaction properties of the bonding agents with oxidants, ammonium perchlorate (AP) and hexogen (RDX), in solid propellants. The further application tests suggest that the bonding agents can effectively interact with the oxidants and effectively improve the mechanical and rheological properties of the four-component hydroxyl-terminated polybutadiene (HTPB) composite solid propellants containing AP and RDX. The agent with longer bond chain length can improve the rheological properties of the propellant slurry more significantly, and the propellant of the best mechanical properties was obtained with DLT-12, consistent with the conclusion obtained in the interfacial interaction study. Our work has provided a new method for simultaneously improving the processing performance and rheological properties of propellants and offered an important guidance for the bonding agent design.
AB - Titanate-based bonding agents are a class of efficient bonding agents for improving the mechanical properties of composite solid propellants, a kind of special composite material. However, high solid contents often deteriorate the rheological properties of propellant slurry, which limits the application of bonding agents. To solve this problem, a series of long-chain alkyl chelated titanate binders, N-n-octyl-N, N-dihydroxyethyl-lactic acid-titanate (DLT-8), N-n-dodecyl-N, N-dihydroxyethyl-lactic acid-titanate (DLT-12), N-n-hexadecyl-N, N-Dihydroxyethyl-lactic acid-titanate (DLT-16), were designed and synthesized in the present work. The infrared absorption spectral changes of solid propellants caused by binder coating and adhesion degrees of the bonding agents on the oxidant surface were determined by micro-infrared microscopy (MIR) and X-ray photoelectron spectroscopy (XPS), respectively, to characterize the interaction properties of the bonding agents with oxidants, ammonium perchlorate (AP) and hexogen (RDX), in solid propellants. The further application tests suggest that the bonding agents can effectively interact with the oxidants and effectively improve the mechanical and rheological properties of the four-component hydroxyl-terminated polybutadiene (HTPB) composite solid propellants containing AP and RDX. The agent with longer bond chain length can improve the rheological properties of the propellant slurry more significantly, and the propellant of the best mechanical properties was obtained with DLT-12, consistent with the conclusion obtained in the interfacial interaction study. Our work has provided a new method for simultaneously improving the processing performance and rheological properties of propellants and offered an important guidance for the bonding agent design.
KW - bonding agent
KW - chelated titanate
KW - interfacial interaction
KW - solid propellant
UR - http://www.scopus.com/inward/record.url?scp=85096407276&partnerID=8YFLogxK
U2 - 10.3390/molecules25225353
DO - 10.3390/molecules25225353
M3 - Article
C2 - 33207790
AN - SCOPUS:85096407276
SN - 1420-3049
VL - 25
JO - Molecules
JF - Molecules
IS - 22
M1 - 5353
ER -