TY - JOUR
T1 - Synthesis of 2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (TAIW) from 2,6,8,12-tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (TADBIW) by catalytic hydrogenolysis using a continuous flow process
AU - Dong, Kai
AU - Sun, Cheng H.
AU - Song, Jian W.
AU - Wei, Gai X.
AU - Pang, Si P.
N1 - Publisher Copyright:
© 2014 American Chemical Society.
PY - 2014/11/21
Y1 - 2014/11/21
N2 - Synthesis of 2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (TAIW) by catalytic hydrogenolysis of 2,6,8,12-tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (TADBIW), a key step for the synthesis of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW), has been first implemented under continuous flow conditions using the commercially available H-Cube Pro reactor. Several variables (i.e., reaction temperature, flow rate, and pressure) and the stability of the system have been investigated to optimize the operating conditions. The results show that a continuous flow system provides a better yield than a batch system. For instance, the yield is 99% at the optimized conditions, while the best yield from batch reactions is 92%. Continuous flow synthesis of TAIW has potential applications in improving the production technologies of HNIW for its many advantages over batch reactions.
AB - Synthesis of 2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (TAIW) by catalytic hydrogenolysis of 2,6,8,12-tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (TADBIW), a key step for the synthesis of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW), has been first implemented under continuous flow conditions using the commercially available H-Cube Pro reactor. Several variables (i.e., reaction temperature, flow rate, and pressure) and the stability of the system have been investigated to optimize the operating conditions. The results show that a continuous flow system provides a better yield than a batch system. For instance, the yield is 99% at the optimized conditions, while the best yield from batch reactions is 92%. Continuous flow synthesis of TAIW has potential applications in improving the production technologies of HNIW for its many advantages over batch reactions.
UR - http://www.scopus.com/inward/record.url?scp=84913587980&partnerID=8YFLogxK
U2 - 10.1021/op500020d
DO - 10.1021/op500020d
M3 - Article
AN - SCOPUS:84913587980
SN - 1083-6160
VL - 18
SP - 1321
EP - 1325
JO - Organic Process Research and Development
JF - Organic Process Research and Development
IS - 11
ER -