TY - JOUR
T1 - Synergetic energetic kinetics of Mg-Zn alloys and pyrotechnics
AU - Zhao, Wanjun
AU - Jiao, Qingjie
AU - Chen, Pengwan
AU - Yan, Shi
AU - Zhu, Yanli
AU - Zhang, Bi
AU - Zeng, Xin
AU - Liu, Dazhi
AU - Ou, Yapeng
AU - Wang, Fang
N1 - Publisher Copyright:
© 2022 The Combustion Institute
PY - 2022/6
Y1 - 2022/6
N2 - Zn has been incorporated into Mg via centrifugal atomization in this work. The prepared Mg-Zn alloys have been characterized via SEM/EDS and XRD. The thermal behavior and combustion of Mg-Zn alloys have been tested by TG/DSC and laser ignition. Then, Mg-Zn alloys have been applied in pyrotechnics with PTFE as the oxidizer, followed by measuring the reactivity and ignition delay. Mg-5%Zn and Mg-10%Zn alloys consisting of α-Mg and eutectic phase (α-Mg and MgZn2) in a high degree of sphericity with evenly distributed Zn were obtained. Thermal behavior characterization indicates that the oxidation of Mg-Zn alloys initiates ∼50 °C earlier than Mg along with a higher oxidation rate, which could be attributed to the lower melting point of MgZn2 and Zn. In addition, the oxidation rate of Mg-Zn alloys is also higher than Mg that is the result of significantly lower apparent activation energy of Mg-Zn alloys than Mg. Due to the great discrepancy of melting and evaporation point between Mg, MgZn2, and Zn, a visible microexplosion phenomenon has been observed during the combustion process of Mg-Zn alloys. Then, Mg-Zn alloys have been applied as the fuel to replace Mg in Mg/PTFE pyrotechnics. The ignition delay of Mg-Zn/PTEE composites is shorter than that of Mg/PTFE, which is due to the easier oxidization initiation of Mg-Zn alloys compared to Mg. Besides, the lower melting and evaporation points of MgZn2 and Zn than Mg can accelerate the combustion of Mg-Zn alloys, leading to the improved peak pressure and reaction rate of Mg-Zn/PTEE. Thus, the lower apparent activation energy of Mg-Zn alloys and the lower melting point of MgZn2 and Zn could promote the energetic kinetics of Mg-Zn alloys synergistically. Above all, the prepared Mg-Zn alloys in this study are ambitious candidates in pyrotechnics for controllable ignition and reactivity kinetics.
AB - Zn has been incorporated into Mg via centrifugal atomization in this work. The prepared Mg-Zn alloys have been characterized via SEM/EDS and XRD. The thermal behavior and combustion of Mg-Zn alloys have been tested by TG/DSC and laser ignition. Then, Mg-Zn alloys have been applied in pyrotechnics with PTFE as the oxidizer, followed by measuring the reactivity and ignition delay. Mg-5%Zn and Mg-10%Zn alloys consisting of α-Mg and eutectic phase (α-Mg and MgZn2) in a high degree of sphericity with evenly distributed Zn were obtained. Thermal behavior characterization indicates that the oxidation of Mg-Zn alloys initiates ∼50 °C earlier than Mg along with a higher oxidation rate, which could be attributed to the lower melting point of MgZn2 and Zn. In addition, the oxidation rate of Mg-Zn alloys is also higher than Mg that is the result of significantly lower apparent activation energy of Mg-Zn alloys than Mg. Due to the great discrepancy of melting and evaporation point between Mg, MgZn2, and Zn, a visible microexplosion phenomenon has been observed during the combustion process of Mg-Zn alloys. Then, Mg-Zn alloys have been applied as the fuel to replace Mg in Mg/PTFE pyrotechnics. The ignition delay of Mg-Zn/PTEE composites is shorter than that of Mg/PTFE, which is due to the easier oxidization initiation of Mg-Zn alloys compared to Mg. Besides, the lower melting and evaporation points of MgZn2 and Zn than Mg can accelerate the combustion of Mg-Zn alloys, leading to the improved peak pressure and reaction rate of Mg-Zn/PTEE. Thus, the lower apparent activation energy of Mg-Zn alloys and the lower melting point of MgZn2 and Zn could promote the energetic kinetics of Mg-Zn alloys synergistically. Above all, the prepared Mg-Zn alloys in this study are ambitious candidates in pyrotechnics for controllable ignition and reactivity kinetics.
KW - Energetic kinetics
KW - Microexplosion phenomenon
KW - Pyrotechnics
KW - Spherical Mg-Zn alloys
KW - Thermal behavior
UR - http://www.scopus.com/inward/record.url?scp=85123249788&partnerID=8YFLogxK
U2 - 10.1016/j.combustflame.2022.112000
DO - 10.1016/j.combustflame.2022.112000
M3 - Article
AN - SCOPUS:85123249788
SN - 0010-2180
VL - 240
JO - Combustion and Flame
JF - Combustion and Flame
M1 - 112000
ER -