摘要
The link between microstructure and mechanical properties is investigated for a superelastic Ni-Mn-Ga microwire with 226 μm diameter, created by solidification via the Taylor method. The wire, which consists of bamboo grains with tetragonal martensite matrix and coarse γ precipitates, exhibits fully reversible superelastic behavior up to 4% tensile strain. Upon multiple tensile load-unload cycles, reproducible stress fluctuations of ∼3 MPa are measured on the loading superelastic stress plateau of ∼50 MPa. During cycles at various temperatures spanning -70 to 55 °C, the plateau stress decreases from 58 to 48 MPa near linearly with increasing temperature. Based on in situ synchrotron X-ray diffraction measurements, we conclude that this superelastic behavior is due to reversible martensite variants reorientation (i.e., reversible twinning) with lattice rotation of ∼13°. The reproducible stress plateau fluctuations are assigned to reversible twinning at well-defined locations along the wire. The strain recovery during unloading is attributed to reverse twinning, driven by the internal stress generated on loading between the elastic γ precipitates and the twinning martensite matrix. The temperature dependence of the twining stress on loading is related to the change in tetragonality of the martensite, as measured by X-ray diffraction.
源语言 | 英语 |
---|---|
页(从-至) | 373-381 |
页数 | 9 |
期刊 | Acta Materialia |
卷 | 99 |
DOI | |
出版状态 | 已出版 - 15 10月 2015 |