Subnormal structure of non-stable unitary groups over rings

Zuhong Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

15 引用 (Scopus)

摘要

Let R be a commutative ring with identity in which 2 is invertible. Let H denote a subgroup of the unitary group U (2 n, R, Λ) with n ≥ 4. H is normalized by E U (2 n, J, ΓJ) for some form ideal (J, ΓJ) of the form ring (R, Λ). The purpose of the paper is to prove that H satisfies a "sandwich" property, i.e. there exists a form ideal (I, ΓI) such that E U (2 n, I J8 ΓJ, Γ) ⊆ H ⊆ C U (2 n, I, ΓI) . Furthermore, we give a classification for the subnormal subgroups of the unitary group U (2 n, R, Λ), which is an analog for the results existing in the general linear groups; see [L.N. Vaserstein, The subnormal structure of general linear groups over rings, Math. Proc. Cambridge Philos. Soc., 108 (1990) 219-229; N.A. Vavilov, Subnormal structure of general linear group, Math. Proc. Cambridge Philos. Soc. 107 (1990) 103-106; J.S. Wilson, The normal and subnormal structure of general linear groups, Proc. Cambridge Philos. Soc. 71 (1972) 163-177].

源语言英语
页(从-至)622-628
页数7
期刊Journal of Pure and Applied Algebra
214
5
DOI
出版状态已出版 - 5月 2010

指纹

探究 'Subnormal structure of non-stable unitary groups over rings' 的科研主题。它们共同构成独一无二的指纹。

引用此