摘要
In this paper, we propose the concepts of stratified (L, M)-semiuniform convergence spaces and stratified (L, M)-semiuniform limit tower spaces. It is shown that (1) the category S(L, M)-SUC of stratified (L, M)-semiuniform convergence spaces can be embedded in the category S(L, M)-SUCT of stratified (L, M)-semiuniform convergence tower spaces as a bireflective subcategory; (2) the full subcategory of S(L, M)-SUCT, consisting of stratified (L, M)-semiuniform limit tower spaces is strongly Cartesian closed; (3) the category S(L, M)-FT of stratified (L, M)-filter tower spaces can be embedded in the category S(L, M)-SUCT as a simultaneously bireflective and bicoreflective subcategory.
源语言 | 英语 |
---|---|
页(从-至) | 179-192 |
页数 | 14 |
期刊 | Iranian Journal of Fuzzy Systems |
卷 | 20 |
期 | 4 |
DOI | |
出版状态 | 已出版 - 1 7月 2023 |
指纹
探究 'Subcategories of the category of stratified (L, M)-semiuniform convergence tower spaces' 的科研主题。它们共同构成独一无二的指纹。引用此
Zhang, L., Pang, B., & Li, W. (2023). Subcategories of the category of stratified (L, M)-semiuniform convergence tower spaces. Iranian Journal of Fuzzy Systems, 20(4), 179-192. https://doi.org/10.22111/ijfs.2023.43934.7736