Study on catalytic activity and mechanism of tetrazole-based energetic metal-organic frameworks for thermal decomposition of ammonium perchlorate

Ling Shu, Hong Bin Deng*, Chao Yang Liu, Ye Liu, Wei Liu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

In order to comprehensively improve the energy performance and combustion properties of the propellants, four energetic metal–organic frameworks (EMOFs) constructed from transition-metal ions (Ag+, Cd2+, Pb2+) and tetrazole-based energetic ligands (5-methyl tetrazole (HMtta), N,N-bis(1H-tetrazole-5-yl)-amine (H2bta), 3-(1H-tetrazol-5-yl)-1H-triazole (H2tztr)) were prepared by hydrothermal synthesis. The crystal phase and structure of the as-prepared samples were analyzed by XRD and IR characterization. Their catalytic activity on thermal decomposition of ammonium perchlorate (AP) was evaluated by DSC. The results show that as-prepared EMOFs can significantly reduce the thermal decomposition temperature of AP and increase its heat release. Under the optimal condition that the addition amount is 10 wt%, the high-temperature decomposition peak temperatures of [AgMtta]n/AP, [Cd5(Mtta)9]n/AP, [Pb3(bta)2(O)2(H2O)]n/AP, and [Pb(Htztr)2(H2O)]n/AP are decreased by 107.2°C, 94.2°C, 54.6°C, and 91.1°C compared to the case of pure AP, while the heat releases of them are increased by 1243.9 J∙g−1, 1226.2 J∙g−1, 1332.2 J∙g−1, 1444.4 J∙g−1, respectively. In addition, compared with the reported catalysts such as [Pb(BTF)(H2O)2]n, CuFe2O4, [Cu2(en)2(HBTI)2]2, and [Cu2(en)(HBTI)2]2en, the EMOFs prepared in this study show equal or even higher catalytic activity and heat release. Moreover, the catalytic mechanism of EMOFs on thermal decomposition of AP is also analyzed based on the electron transfer theory. With the excellent energy properties and catalytic performances, the prepared EMOFs may become promising energetic additives for composite solid propellant applications.

源语言英语
页(从-至)53-67
页数15
期刊Journal of Energetic Materials
42
1
DOI
出版状态已出版 - 2024

指纹

探究 'Study on catalytic activity and mechanism of tetrazole-based energetic metal-organic frameworks for thermal decomposition of ammonium perchlorate' 的科研主题。它们共同构成独一无二的指纹。

引用此