Stuck Pipe Prediction Using Adaptive Nero-Fuzzy Inference System Based on Feature Analysis

Zhigao Xiao, Luefeng Chen*, Chengda Lu, Min Wu, Witold Pedrycz, Kaoru Hirota

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In the process of underground drilling in coal mine, there are some cases of drilling resistance but not stuck pipe. The method of data training model to predict stuck drilling will often lead to a high false alarm rate and reduce the prediction accuracy. Therefore, this paper proposes an improved adaptive nero-fuzzy inference system prediction method based on feature analysis (ANFIS-FA). The rotational speed with the strongest correlation was selected as the feature analysis object through principal component analysis, and then the sliding window was used to extract the amplitude change to construct the penalty factor, so as to improve the prediction results of ANFIS. In this paper, the actual drilling data are used for experiments. The results show that ANFIS-FA reduces the false alarm rate and improves the prediction accuracy, which has certain guiding significance for practical drilling.

源语言英语
主期刊名Proceedings - 2022 Chinese Automation Congress, CAC 2022
出版商Institute of Electrical and Electronics Engineers Inc.
5970-5975
页数6
ISBN(电子版)9781665465335
DOI
出版状态已出版 - 2022
已对外发布
活动2022 Chinese Automation Congress, CAC 2022 - Xiamen, 中国
期限: 25 11月 202227 11月 2022

出版系列

姓名Proceedings - 2022 Chinese Automation Congress, CAC 2022
2022-January

会议

会议2022 Chinese Automation Congress, CAC 2022
国家/地区中国
Xiamen
时期25/11/2227/11/22

指纹

探究 'Stuck Pipe Prediction Using Adaptive Nero-Fuzzy Inference System Based on Feature Analysis' 的科研主题。它们共同构成独一无二的指纹。

引用此

Xiao, Z., Chen, L., Lu, C., Wu, M., Pedrycz, W., & Hirota, K. (2022). Stuck Pipe Prediction Using Adaptive Nero-Fuzzy Inference System Based on Feature Analysis. 在 Proceedings - 2022 Chinese Automation Congress, CAC 2022 (页码 5970-5975). (Proceedings - 2022 Chinese Automation Congress, CAC 2022; 卷 2022-January). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CAC57257.2022.10055664