Structure of Green’s function of elliptic equations and helical vortex patches for 3D incompressible Euler equations

Daomin Cao, Jie Wan*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 2
  • Captures
    • Readers: 1
  • Mentions
    • News Mentions: 1
see details

摘要

We develop a new structure of the Green’s function of a second-order elliptic operator in divergence form in a 2D bounded domain. Based on this structure and the theory of rearrangement of functions, we construct concentrated traveling-rotating helical vortex patches to 3D incompressible Euler equations in an infinite pipe. By solving an equation for vorticity (Formula presented.) for small ε>0 and considering a certain maximization problem for the vorticity, where GKH is the inverse of an elliptic operator LKH in divergence form, we get the existence of a family of concentrated helical vortex patches, which tend asymptotically to a singular helical vortex filament evolved by the binormal curvature flow. We also get nonlinear orbital stability of the maximizers in the variational problem under Lp perturbation when p≥2.

源语言英语
页(从-至)2627-2669
页数43
期刊Mathematische Annalen
388
3
DOI
出版状态已出版 - 1月 2024

指纹

探究 'Structure of Green’s function of elliptic equations and helical vortex patches for 3D incompressible Euler equations' 的科研主题。它们共同构成独一无二的指纹。

引用此

Cao, D., & Wan, J. (2024). Structure of Green’s function of elliptic equations and helical vortex patches for 3D incompressible Euler equations. Mathematische Annalen, 388(3), 2627-2669. https://doi.org/10.1007/s00208-023-02589-8