Structure-coupled Variational Bayesian Method for Building Layout Reconstruction

Zixiang Yin*, Xiaolu Zeng, Xiaopeng Yang, Jiancheng Liao, Junbo Gong

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This paper presents a structure-coupled sparse Bayesian learning method for building layout reconstruction using through-the-wall radar. We characterize the azimuth continuity of the wall and two-dimensional extensibility of corner into a hierarchical probabilistic model. Moreover, we employ a variational expectation maximization algorithm to perform Bayesian inference, which provides an internal building structure map. Meanwhile, a generalized approximate message passing algorithm is integrated to speed up operations by avoiding matrix inversion. Results based on real data validate that the proposed method can extract the walls and corners accurately, thus enabling building layout reconstruction completely.

源语言英语
主期刊名2024 Photonics and Electromagnetics Research Symposium, PIERS 2024 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9798350375909
DOI
出版状态已出版 - 2024
活动2024 Photonics and Electromagnetics Research Symposium, PIERS 2024 - Chengdu, 中国
期限: 21 4月 202425 4月 2024

出版系列

姓名2024 Photonics and Electromagnetics Research Symposium, PIERS 2024 - Proceedings

会议

会议2024 Photonics and Electromagnetics Research Symposium, PIERS 2024
国家/地区中国
Chengdu
时期21/04/2425/04/24

指纹

探究 'Structure-coupled Variational Bayesian Method for Building Layout Reconstruction' 的科研主题。它们共同构成独一无二的指纹。

引用此