Structural Instability in Electrically Stressed, Oxygen Deficient BaTiO3 Nanocrystals

Xinchun Tian*, Geoff L. Brennecka, Xiaoli Tan*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

10 引用 (Scopus)

摘要

The dynamics of oxygen vacancies under external stimuli dominates the performance of many solid-state devices, including capacitors, oxide memristors, anionic conductors, etc. By means of in situ transmission electron microscopy, it is found in BaTiO3 perovskite nanocrystals that formation of oxygen vacancies due to electrical stressing renders the oxide amorphizable under electron beam illumination, suggesting the presence of a threshold concentration of oxygen vacancy affecting the structural stability of BaTiO3 crystals upon high energy radiation. In contrast to the structural change, the resistivity of the nanocrystal seems not liable to the amorphization prior to dielectric breakdown at higher voltage bias. It is proposed that an increase in oxygen vacancy content promotes oxygen mobility in the perovskite structure allowing electron beam induced electric field to modify the local structure and composition. The in situ observations reveal the central role of oxygen vacancies in the structural stability of perovskites which is of paramount importance to their applications in extreme environments and suggest a potential new route to micro-processing perovskite oxides using the electron beam via oxygen vacancy management without severely compromising the electric property.

源语言英语
文章编号2004607
期刊Advanced Functional Materials
30
46
DOI
出版状态已出版 - 11 11月 2020
已对外发布

指纹

探究 'Structural Instability in Electrically Stressed, Oxygen Deficient BaTiO3 Nanocrystals' 的科研主题。它们共同构成独一无二的指纹。

引用此