Stochastic linear regularization methods: random discrepancy principle and applications

Ye Zhang, Chuchu Chen*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

The a posteriori stopping rule plays a significant role in the design of efficient stochastic algorithms for various tasks in computational mathematics, such as inverse problems, optimization, and machine learning. Through the lens of classical regularization theory, this paper describes a novel analysis of Morozov’s discrepancy principle for the stochastic generalized Landweber iteration and its continuous analog of generalized stochastic asymptotical regularization. Unlike existing results relating to convergence in probability, we prove the strong convergence of the regularization error using tools from stochastic analysis, namely the theory of martingales. Numerical experiments are conducted to verify the convergence of the discrepancy principle and demonstrate two new capabilities of stochastic generalized Landweber iteration, which should also be valid for other stochastic/statistical approaches: improved accuracy by selecting the optimal path and the identification of multi-solutions by clustering samples of obtained approximate solutions.

源语言英语
文章编号025007
期刊Inverse Problems
40
2
DOI
出版状态已出版 - 2月 2024

指纹

探究 'Stochastic linear regularization methods: random discrepancy principle and applications' 的科研主题。它们共同构成独一无二的指纹。

引用此