Stochastic Komatu–Loewner evolutions and BMD domain constant

Zhen Qing Chen*, Masatoshi Fukushima

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

10 引用 (Scopus)

摘要

For Komatu–Loewner equation on a standard slit domain, we randomize the Jordan arc in a manner similar to that of Schramm (2000) to find the SDEs satisfied by the induced motion ξ(t) on ∂H and the slit motion s(t). The diffusion coefficient α and drift coefficient b of such SDEs are homogeneous functions. Next with solutions of such SDEs, we study the corresponding stochastic Komatu–Loewner evolution, denoted as SKLEα,b. We introduce a function bBMD measuring the discrepancy of a standard slit domain from H relative to BMD. We show that SKLE6,−bBMD enjoys a locality property.

源语言英语
页(从-至)545-594
页数50
期刊Stochastic Processes and their Applications
128
2
DOI
出版状态已出版 - 2月 2018
已对外发布

指纹

探究 'Stochastic Komatu–Loewner evolutions and BMD domain constant' 的科研主题。它们共同构成独一无二的指纹。

引用此