摘要
The main result of this note is the existence of martingale solutions to the stochastic heat equation (SHE) in a Riemannian manifold by using suitable Dirichlet forms on the corresponding path/loop space. Moreover, we present some characterizations of the lower bound of the Ricci curvature by functional inequalities of various associated Dirichlet forms.
源语言 | 英语 |
---|---|
页(从-至) | 205-213 |
页数 | 9 |
期刊 | Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni |
卷 | 29 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 2018 |
指纹
探究 'Stochastic heat equations with values in a Riemannian manifold' 的科研主题。它们共同构成独一无二的指纹。引用此
Röckner, M., Wu, B., Zhu, R., & Zhu, X. (2018). Stochastic heat equations with values in a Riemannian manifold. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni, 29(1), 205-213. https://doi.org/10.4171/RLM/801