Step-by-step fault diagnosis of rolling bearings based on EMD and random forest

Hongmei Yan, Huina Mu, Xiaojian Yi*, Yuanyuan Yang, Guangliang Chen

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

A step-by-step fault diagnosis method based on Empirical Mode Decomposition (EMD) combined with Random Forest algorithm was proposed for actual requirements of rolling bearing vibration fault diagnosis. Firstly, the preliminary fault monitoring was carried out, and a Linear Support Vector Machine model was established by extracting the Permutation Entropy of vibration signals as characteristic parameters to judge whether the bearing was faulty or not. Then, the fault location identification and the fault degree determination were carried out, and high-dimensional characteristic parameters in time domain, frequency domain and time-frequency domain are respectively extracted as inputs of the Random Forest algorithm. Finally, through the step-by-step diagnostic test of rolling bearing vibration data, the results show that each step of diagnosis can achieve 100% diagnostic accuracy and appropriate training time, which proves that EMD and Random Forest have good effect on step-by-step fault diagnosis of rolling bearing.

源语言英语
主期刊名Proceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
编辑Chuan Li, Shaohui Zhang, Jianyu Long, Diego Cabrera, Ping Ding
出版商Institute of Electrical and Electronics Engineers Inc.
311-317
页数7
ISBN(电子版)9781728101996
DOI
出版状态已出版 - 8月 2019
活动2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019 - Beijing, 中国
期限: 15 8月 201917 8月 2019

出版系列

姓名Proceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019

会议

会议2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
国家/地区中国
Beijing
时期15/08/1917/08/19

指纹

探究 'Step-by-step fault diagnosis of rolling bearings based on EMD and random forest' 的科研主题。它们共同构成独一无二的指纹。

引用此