StemNet: A Dataset, Benchmark and Method for Scene Recognition in Remote Sensing

Jinyu Li, Mengmeng Zhang*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This study addresses the challenges in remote sensing scene recognition, traditionally treated as an image classification problem, leading to issues with false positives and false negatives, especially in complex images. We propose a paradigm shift by framing scene recognition as an advanced object detection task and introduce a specialized dataset to assess models in realistic scenarios. Our approach includes StemNet, an innovative fusion technique integrating hyperspectral and RGB imagery, surpassing traditional methods in accuracy, precision, and robustness. Through extensive experimentation, StemNet consistently outperforms conventional techniques, offering a groundbreaking perspective and setting a benchmark for future methodologies in remote sensing scene recognition. The introduced dataset and StemNet contribute significantly to advancing research and practice in this field.

源语言英语
主期刊名ICIGP 2024 - Proceedings of the 2024 7th International Conference on Image and Graphics Processing
出版商Association for Computing Machinery
205-210
页数6
ISBN(电子版)9798400716720
DOI
出版状态已出版 - 19 1月 2024
活动7th International Conference on Image and Graphics Processing, ICIGP 2024 - Beijing, 中国
期限: 19 1月 202421 1月 2024

出版系列

姓名ACM International Conference Proceeding Series

会议

会议7th International Conference on Image and Graphics Processing, ICIGP 2024
国家/地区中国
Beijing
时期19/01/2421/01/24

指纹

探究 'StemNet: A Dataset, Benchmark and Method for Scene Recognition in Remote Sensing' 的科研主题。它们共同构成独一无二的指纹。

引用此