Steady-state mean square performance of a sparsified kernel least mean square algorithm

Badong Chen*, Zhengda Qin, Lei Sun

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

In this paper, we investigate the convergence performance of a sparsified kernel least mean square (KLMS) algorithm in which the input is added into the dictionary only when the prediction error in amplitude is larger than a preset threshold. Under certain conditions, we derive an approximate value of the steady-state excess mean square error (EMSE). Simulation results confirm the theoretical predictions and provide some interesting findings, showing that the sparsification can not only be used to constrain the network size (hence reduce the computational burden) but also be used to improve the steady-state performance in some cases.

源语言英语
主期刊名2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
2701-2705
页数5
ISBN(电子版)9781509041176
DOI
出版状态已出版 - 16 6月 2017
活动2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, 美国
期限: 5 3月 20179 3月 2017

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN(印刷版)1520-6149

会议

会议2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
国家/地区美国
New Orleans
时期5/03/179/03/17

指纹

探究 'Steady-state mean square performance of a sparsified kernel least mean square algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此