State-of-health estimation for the lithium-ion battery based on gradient boosting decision tree with autonomous selection of excellent features

Zhiqi Zhang, Li Li, Xi Li, Yuchen Hu, Kai Huang, Bingya Xue, Yuqi Wang, Yajuan Yu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

39 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 36
  • Captures
    • Readers: 46
see details

摘要

The prediction of the health status and remaining useful life of lithium-ion batteries is very important for the safety of electric vehicles and other devices. However, due to the fact that battery residual capacity cannot be measured in real time, the estimation of battery health status is a great challenge for the management system of electric vehicles. At present, machine learning methods have been widely used in battery health state estimation. Based on the experimental data of NASA lithium-ion battery, this article proposes a model based on gradient boosting decision tree (GBDT) model framework and screens effective features from the original battery information indicators to achieve accurate evaluation of lithium-ion battery health state. In this work, many features are extracted from the original charge and discharge data of the battery, and two methods, correlation coefficient and decision tree, are used to screen initial feature, then variance inflation factor (VIF) is used for further screening, finally an efficient iterative method is used to obtain a combination of well-performing features. The validity of the residual capacity estimation method is proved by the study of NASA battery data set.

源语言英语
页(从-至)1756-1765
页数10
期刊International Journal of Energy Research
46
2
DOI
出版状态已出版 - 2月 2022

指纹

探究 'State-of-health estimation for the lithium-ion battery based on gradient boosting decision tree with autonomous selection of excellent features' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zhang, Z., Li, L., Li, X., Hu, Y., Huang, K., Xue, B., Wang, Y., & Yu, Y. (2022). State-of-health estimation for the lithium-ion battery based on gradient boosting decision tree with autonomous selection of excellent features. International Journal of Energy Research, 46(2), 1756-1765. https://doi.org/10.1002/er.7292