Stable, high-performance sodium-based plasmonic devices in the near infrared

Yang Wang, Jianyu Yu, Yi Fei Mao, Ji Chen, Suo Wang, Hua Zhou Chen, Yi Zhang, Si Yi Wang, Xinjie Chen, Tao Li, Lin Zhou*, Ren Min Ma, Shining Zhu, Wenshan Cai, Jia Zhu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

152 引用 (Scopus)

摘要

Plasmonics enables the manipulation of light beyond the optical diffraction limit1–4 and may therefore confer advantages in applications such as photonic devices5–7, optical cloaking8,9, biochemical sensing10,11 and super-resolution imaging12,13. However, the essential field-confinement capability of plasmonic devices is always accompanied by a parasitic Ohmic loss, which severely reduces their performance. Therefore, plasmonic materials (those with collective oscillations of electrons) with a lower loss than noble metals have long been sought14–16. Here we present stable sodium-based plasmonic devices with state-of-the-art performance at near-infrared wavelengths. We fabricated high-quality sodium films with electron relaxation times as long as 0.42 picoseconds using a thermo-assisted spin-coating process. A direct-waveguide experiment shows that the propagation length of surface plasmon polaritons supported at the sodium–quartz interface can reach 200 micrometres at near-infrared wavelengths. We further demonstrate a room-temperature sodium-based plasmonic nanolaser with a lasing threshold of 140 kilowatts per square centimetre, lower than values previously reported for plasmonic nanolasers at near-infrared wavelengths. These sodium-based plasmonic devices show stable performance under ambient conditions over a period of several months after packaging with epoxy. These results indicate that the performance of plasmonic devices can be greatly improved beyond that of devices using noble metals, with implications for applications in plasmonics, nanophotonics and metamaterials.

源语言英语
页(从-至)401-405
页数5
期刊Nature
581
7809
DOI
出版状态已出版 - 28 5月 2020
已对外发布

指纹

探究 'Stable, high-performance sodium-based plasmonic devices in the near infrared' 的科研主题。它们共同构成独一无二的指纹。

引用此