Stabilizing Halogen-Bonded Complex between Metallic Anion and Iodide

Fei Ying, Xu Yuan, Xinxing Zhang*, Jing Xie*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

Halogen bonds (XBs) between metal anions and halides have seldom been reported because metal anions are reactive for XB donors. The pyramidal-shaped Mn(CO)5 anion is a candidate metallic XB acceptor with a ligand-protected metal core that maintains the negative charge and an open site to accept XB donors. Herein, Mn(CO)5 is prepared by electrospray ionization, and its reaction with CH3I in gas phase is studied using mass spectrometry and density functional theory (DFT) calculation. The product observed experimentally at m/z = 337 is assigned as [IMn(CO)4(OCCH3)], which is formed by successive nucleophilic substitution and reductive elimination, instead of the halogen-bonded complex (XC) CH3−I···Mn(CO)5, because the I···Mn interaction is weak within XC and it could be a transient species. Inspiringly, DFT calculations predict that replacing CH3I with CF3I can strengthen the halogen bonding within the XC due to the electro-withdrawing ability of F. More importantly, in so doing, the nucleophilic substitution barrier can be raised significantly, ~30 kcal/mol, thus leaving the system trapping within the XC region. In brief, the combination of a passivating metal core and the introduction of an electro-withdrawing group to the halide can enable strong halogen bonding between metallic anion and iodide.

源语言英语
文章编号8069
期刊Molecules
27
22
DOI
出版状态已出版 - 11月 2022

指纹

探究 'Stabilizing Halogen-Bonded Complex between Metallic Anion and Iodide' 的科研主题。它们共同构成独一无二的指纹。

引用此