Stabilization of hypersonic boundary-layer instability using porous coatings under thermochemical nonequilibrium

Ken Chun Kit Uy, Jiaao Hao*, Rui Zhao, Chih Yung Wen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

In this study, the suppression of the instability of the hypersonic boundary-layer transition under thermochemical nonequilibrium (TCNE) using a porous coating configuration is examined through linear stability theory (LST) and direct numerical simulation (DNS). Fedorov's admittance model is applied in LST to account for the porous coating effect. The model is modified accordingly such that the flow condition simulated under the TCNE assumption is considered. The results are compared with the case under the calorically perfect gas (CPG) assumption. Conditions of Mach 20-6 degree wedge flow and Mach 45-10 degree wedge flow are chosen for this study. In general, the second mode instability is destabilized and shifts upstream under the TCNE effect. Through the comparison between the DNS and LST results in the presence of a porous coating, it is concluded that the effect of suppressing the instability is very similar under both the CPG and TCNE assumptions. The TCNE effect has minimal impact on the acoustic attenuation of the instability within the cavity. Furthermore, the use of the admittance models in LST can fairly predict the trend of disturbance growth in DNS if the porous coating region is sufficiently long, validating the feasibility of extending the application of the admittance model to a different thermochemical state in addition to the CPG assumption. Examination of the perturbation contours under different state assumptions reveals the absence of second-mode wave structure in the region of microcavities, confirming the stabilization of hypersonic boundary-layer instability.

源语言英语
文章编号108520
期刊Aerospace Science and Technology
141
DOI
出版状态已出版 - 10月 2023

指纹

探究 'Stabilization of hypersonic boundary-layer instability using porous coatings under thermochemical nonequilibrium' 的科研主题。它们共同构成独一无二的指纹。

引用此