SSGL - Pixel Level SAR Ship Instance Segmentation Network Based on Global and Local Feature Cross Attention

Shibo Chang, Hao Chang, Chunyan Zhang, Xiongjun Fu*, Zhifeng Ma*

*此作品的通讯作者

科研成果: 会议稿件论文同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 1
see details

摘要

Synthetic Aperture Radar (SAR) plays a crucial role in maritime search, rescue operations and port vessel traffic monitoring. Existing algorithms are difficult to simultaneously extract features of multi-scale targets in SAR images, resulting in uneven accuracy in multi-scale ship instance segmentation. Moreover, due to the complexity of image scenes, existing algorithms struggles to accurately segment targets. Regarding the above difficulties, we propose a Pixel level SAR ship instance segmentation network based on global and local feature cross attention (SSGL). We propose a context aware convolutional attention module (CACA). CACA leverages cross-correlation calculations for global information, aiding SSGL in better distinguishing between foreground objects and complex backgrounds. We design a channel optimization module (COM) that combines multi-path convolution with channel attention to adaptively adjust the receptive field, allowing for balanced feature extraction across different target scales. SSGL's instance segmentation mask achieved 93.6 on the SSDD dataset and 89.1 on the HRSID dataset. Both APM and APL significantly surpasses comparative algorithms, proving SSGL's balanced and high-precision instance segmentation for multi-scale targets.

源语言英语
9509-9512
页数4
DOI
出版状态已出版 - 2024
活动2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, 希腊
期限: 7 7月 202412 7月 2024

会议

会议2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024
国家/地区希腊
Athens
时期7/07/2412/07/24

指纹

探究 'SSGL - Pixel Level SAR Ship Instance Segmentation Network Based on Global and Local Feature Cross Attention' 的科研主题。它们共同构成独一无二的指纹。

引用此

Chang, S., Chang, H., Zhang, C., Fu, X., & Ma, Z. (2024). SSGL - Pixel Level SAR Ship Instance Segmentation Network Based on Global and Local Feature Cross Attention. 9509-9512. 论文发表于 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024, Athens, 希腊. https://doi.org/10.1109/IGARSS53475.2024.10642333