SPL-VINS: superpoint line vins mono

Xiaoyu Tian, Hongyu Cao, Li Li*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Deep learning, with its data-driven advantages, achieves robustness beyond that of traditional algorithms. The integration of deep learning with visual-inertial odometry (VIO) has been a prominent research topic. However, a mature integration solution has yet to emerge. In this paper, we propose SPL-VINS, which combines the deep learning-based feature point detection algorithm SuperPoint with the Vins Mono. Additionally, we add line features into Vins Mono and propose a non-maximum suppression(NMS) method for line features. The residual of line features is modeled in the form of point-to-line distance. Experimental results on the public dataset Euroc demonstrate a significant reduction in absolute translation error and rotation error compared to Vins Mono.

源语言英语
主期刊名International Conference on Advanced Image Processing Technology, AIPT 2024
编辑Lu Leng, Zhenghao Shi
出版商SPIE
ISBN(电子版)9781510682542
DOI
出版状态已出版 - 2024
活动2024 International Conference on Advanced Image Processing Technology, AIPT 2024 - Chongqing, 中国
期限: 31 5月 20242 6月 2024

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
13257
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议2024 International Conference on Advanced Image Processing Technology, AIPT 2024
国家/地区中国
Chongqing
时期31/05/242/06/24

指纹

探究 'SPL-VINS: superpoint line vins mono' 的科研主题。它们共同构成独一无二的指纹。

引用此