TY - JOUR
T1 - Spin-phonon coupling effects in transition-metal perovskites
T2 - A DFT+U and hybrid-functional study
AU - Hong, Jiawang
AU - Stroppa, Alessandro
AU - Añiguez, Jorge
AU - Picozzi, Silvia
AU - Vanderbilt, David
PY - 2012/2/15
Y1 - 2012/2/15
N2 - Spin-phonon coupling effects, as reflected in phonon frequency shifts between ferromagnetic (FM) and G-type antiferromagnetic (AFM) configurations in cubic CaMnO 3, SrMnO 3, BaMnO 3, LaCrO 3, LaFeO 3, and La 2(CrFe)O 6, are investigated using density-functional methods. The calculations are carried out both with a hybrid-functional Heyd-Scuseria-Ernzerhof (HSE) approach and with a DFT+ U approach using a U that has been fitted to HSE calculations. The phonon frequency shifts obtained in going from the FM to the AFM spin configuration agree well with those computed directly from the more accurate HSE approach, but are obtained with much less computational effort. We find that in the AMnO 3 materials class with A= Ca, Sr, and Ba, this frequency shift decreases as the A cation radius increases for the Γ phonons, while it increases for R-point phonons. In LaMO 3 with M= Cr, Fe, and Cr/Fe, the phonon frequencies at Γ decrease as the spin order changes from AFM to FM for LaCrO 3 and LaFeO 3, but they increase for the double perovskite La 2(CrFe)O 6. We discuss these results and the prospects for bulk and superlattice forms of these materials to be useful as multiferroics.
AB - Spin-phonon coupling effects, as reflected in phonon frequency shifts between ferromagnetic (FM) and G-type antiferromagnetic (AFM) configurations in cubic CaMnO 3, SrMnO 3, BaMnO 3, LaCrO 3, LaFeO 3, and La 2(CrFe)O 6, are investigated using density-functional methods. The calculations are carried out both with a hybrid-functional Heyd-Scuseria-Ernzerhof (HSE) approach and with a DFT+ U approach using a U that has been fitted to HSE calculations. The phonon frequency shifts obtained in going from the FM to the AFM spin configuration agree well with those computed directly from the more accurate HSE approach, but are obtained with much less computational effort. We find that in the AMnO 3 materials class with A= Ca, Sr, and Ba, this frequency shift decreases as the A cation radius increases for the Γ phonons, while it increases for R-point phonons. In LaMO 3 with M= Cr, Fe, and Cr/Fe, the phonon frequencies at Γ decrease as the spin order changes from AFM to FM for LaCrO 3 and LaFeO 3, but they increase for the double perovskite La 2(CrFe)O 6. We discuss these results and the prospects for bulk and superlattice forms of these materials to be useful as multiferroics.
UR - http://www.scopus.com/inward/record.url?scp=84857545420&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.85.054417
DO - 10.1103/PhysRevB.85.054417
M3 - Article
AN - SCOPUS:84857545420
SN - 1098-0121
VL - 85
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 5
M1 - 054417
ER -